D8 And Inner Auto-morphisms Of D8

OSONDU-ANYANWU NKEMJIKA M. | 40 pages (6358 words) | Projects

ABSTRACT

D8 , the dihedral group of order 16, is the group formed by the set of rotations and reflections of a regular octagon. I am going to deal with D8, the inner automorphisms of D8and its relationship with the center of D8, the conjugates of elements in D8 and the centralizer of an element in D8

Overall Rating

0.0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

OSONDU-ANYANWU, M (2021). D8 And Inner Auto-morphisms Of D8 . Mouau.afribary.org: Retrieved Dec 23, 2024, from https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2

MLA 8th

M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 " Mouau.afribary.org. Mouau.afribary.org, 30 Jun. 2021, https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2. Accessed 23 Dec. 2024.

MLA7

M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 ". Mouau.afribary.org, Mouau.afribary.org, 30 Jun. 2021. Web. 23 Dec. 2024. < https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2 >.

Chicago

M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 " Mouau.afribary.org (2021). Accessed 23 Dec. 2024. https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2

Please wait...