ABSTRACT
D8 , the dihedral group of order 16, is the group formed by
the set of rotations and reflections of a regular octagon. I am going to deal
with D8, the inner automorphisms of D8and its relationship with the center of
D8, the conjugates of elements in D8 and the centralizer of an element in D8
OSONDU-ANYANWU, M (2021). D8 And Inner Auto-morphisms Of D8 . Mouau.afribary.org: Retrieved Dec 23, 2024, from https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2
M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 " Mouau.afribary.org. Mouau.afribary.org, 30 Jun. 2021, https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2. Accessed 23 Dec. 2024.
M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 ". Mouau.afribary.org, Mouau.afribary.org, 30 Jun. 2021. Web. 23 Dec. 2024. < https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2 >.
M., OSONDU-ANYANWU. "D8 And Inner Auto-morphisms Of D8 " Mouau.afribary.org (2021). Accessed 23 Dec. 2024. https://repository.mouau.edu.ng/work/view/d8-and-inner-auto-morphisms-of-d8-7-2